TaeguTec GEAR Machining Solutions

Gear Machining

in ing

TRADEGUTE OFFICIUE

ADVANCE BUTTING

- Very high productivity on 5-axis machines with perfect synchronization between the two spindles
- Indexable type is mainly used for larger than Module 2.5
- Easy to apply and replace inserts

- Quintessential machining method for external gears
- High productivity with indexable type hobs
- Smooth cutting due to helical layout

- Mass production for internal and external gears
- Mainly applied to wind power, construction machinery and shipbuilding industries

- Mainly applied to internal gear machining
- Also applied to external gear machining with interference
- Conventional method, but highly flexible
- Compared to Solid HSS, it is more convenient to use, with better productivity and longer tool life

- The head-changeable type is mainly applied to Module 0.4-2.5
- High-precision machining
- Higher productivity and tool life compared to HSS tools in machining high hardness materials
- Hard power skiving is possible after heat treatment

1AAAAA

CONTENTS

changeable Power Power Skiving Skiving

GEAR HOB

Monobody Hobs

Flange Type Gashers

Worm Gear Roughing and Finishing

Gashers

GEARSHAPE

Rotor Screw Gashers

Gear Machining Solutions

Replaces Conventional Gear Machining

Power skiving replaces conventional gear machining like broaching, hobbing and shaping

Power skiving replaces most of the existing gear manufacturing processes

High Productivity

Power skiving reduces considerable cycle times when compared to conventional gear machining methods

Tool type

One Machine for Turning, Milling and Gear Machining

Complete gear component machining in a single set-up multitask machine that shortens production time, improves gear quality class while reducing handling and logistics costs

Production flow with power skiving

• When power skiving using a multitask machine: all cutting is done on one machine

• Without power skiving: workpiece should be moved to 3-4 different machine types

High Flexibility

Machining for various number of teeth, internal, external, spurs and helical gears

Module range: 3 - 10 Diameter range: Ø80 - Ø220

- High-precision and great quality due to the monobody design
- Helical layout makes for smooth cutting
- High productivity

Laydown insert type

High accuracy insert toleranceHigh productivity

Tangential insert type

Economical 4-cutting edge insertLow cutting load

Segment Hobs

Module range: 6 - 24 Diameter range: Ø160 - Ø550

- Hobs extension and reduction is possible
- Helical layout enables smooth cutting
- High productivity

Hobs profile for finishing

Multi threads

• Generate various profiles with inserts on one hob

1s

- Helical layout enables smooth cutting
- Lower cutting load with half effective over full effective solid type hobs

Indexable type hobs (half effective)

Solid type hobs (full effective)

Tool life

- Higher productivity compared to solid HSS hobs
- Longer tool life compared to solid HSS hobs

Productivity

Case Study Hobs

	Conventional (HSS hobs)	TaeguTec (Indexable hobs)
Cutter	D100	TGHC D300-100N-M10-AY
V (m/min)	25	150
Feed (mm/WR*)	0.8	5
Effective teeth	9	7
Coolant	dry	dry
Running time (min)	770	72

* WR (workpiece revolution)

14

Disc Type Single Gashers

- For spurs and helical gears
- Long tool life due to high performance insert grades and geometries
- High-precision machining

External Gear Single Gashers

Internal Gear Single Gashers

Flange Type Gashers

- For external spurs and helical gears
- Roughing and finishing applications
- Tangential and lay down solutions
- For the machining center
- Module 0.5 and up

Rack Gear Gashers

- High stability cutting performance due to optimized insert geometry and lay out
- Roughing and finishing of small modules: module 2 and up
- Smooth chip evacuation

- High metal removal rate solution
- For large internal and external gear wheels
- Tailor-made for special gear profiles

Double Helical Gear Cutters

- Special endmill type cutters to resolve the interference between the right and left helix gears
- Helical cutting edge design for smooth cutting in roughing applications
- Coated insert type cutters for increased productivity

Spline/Spur Gear Cutters

- · Very stable cutting due to optimized insert geometry and lay out
- Roughing and finishing of small modules: module 1 and up
- Smooth chip evacuation

- High productivity

Internal gearing with a shoulder

Herringbone gearing

Gear Machining Solutions

(20)

Rotor Screw Gashers

- Roughing and semi-finishing applications
- Indexable inserts on both male and female gashers
- Minimum profile deviation due to the optimized design

Profile Type

>> External with Protuberance

>> External without Protuberance

>> Internal without Protuberance

									Date: _	
Contact								Order/Qu	otation Alrea	dy in
TaeguTec	Contact						Yes		No	[
Customer							Order- /	Quotatior	n-No.	
Customer	Contact									
Machine to	ol builder / Type		Powe	er (kW)		Module	0.4-2.5		Module 2	2.5-10
Revolution	speed (rpm)	Spindle		Table						
Internal co	olant				-	AF			2	4%
HSK-T	ISO 12164-3	100 🗌	80 🗆	63 🗌	50 🗌	200	- Clas			
Polygon	ISO 26623-1	C8X 🗆	C8 🗆	C6 🗆	C5 🗆		0		2	1.
Special ac	laption						3/		200	00
Workpiece	e material						A day			-
Workpied	e Data					W	/orkpiece (Collision	Dimensions	
Module				m [mm]						
• •							Ev.	tarmal	0.01	

Module	m [mm]	
Gear quality		
No. of teeth	Z	
Pressure angle	a[°]	
Helix angle	β[°]	
Flank direction	Ĺ/R	
Addendum modification coefficient	Х	
Tip diameter	da [mm]	
Root diameter	df [mm]	
Root radius	rr₽ [mm]	
Root form diameter	dff [mm]	
Dimension over balls	Md [mm]	
Max. dimension over balls	Mdmax [mm]	
Min. dimension over balls	Mdmin [mm]	
Ball diameter	Dм [mm]	
Base tangent length over k meas. teeth	Wk [mm]	
Max. base tangent length	W _{kmax} [mm]	
Min. base tangent length	Wkmin [mm]	
No. of measuring teeth	k	
Stock for finishing	[mm]	
Basic rack profile		

Basic rack profile			
Gear Tooth Modification			Remark
Protuberance	No 🗆	Yes 🗆	
Tip relief	No 🗆	Yes 🗆	

GEAR - OB Request Form	
Tool Specifications for Technical Quotation	

				Date: _	
Contact			Order/Quota	tion Alrea	ady in
TaeguTec Contact		Yes		No	
Customer		Order- /	Quotation-N	0.	
Customer Contact					

Tool LT [mm] Tool length Usable length L [mm] Keyway (axial/radial) a/r b₁ / b₃ [mm] Keyway width t₁ / t₃ [mm] Keyway depth Module m [mm] Outside diameter D [mm] d [mm] Bore diameter Hub diameter d1 [mm] Quality class acc. to [DIN 3968] Spir No.

Spiral direction	LH/RH	
No. of starts		
Tool Profile Data		
Addendum	hapo [mm]	
Tooth thickness	SPO [mm]	
Tooth depth	hpo [mm]	
Pressure angle	<i>a</i> po [°]	
Tip radius	papo [mm]	
Protuberance amount	prPO [mm]	

a prPO [°]

Remark

Protuberance angle

Profile of Roughing Hob with Protuberance

Gear Machining Solutions

				Date: _	
Contact			Order/Quo	tation Alrea	dy in
TaeguTec Contact		Yes		No	
Customer		Order- /	Quotation-	No.	
Customer Contact					

D [mm]

d [mm]

dı [mm]

b₃ [mm]

t₃ [mm]

b1 [mm]

t₁ [mm]

a / LT [mm]

Yes		No	
Order- / Q	uotation-No).	
Module	ອ 4-80 (Roເ	ugh) / 4-22	(Finish)

Max. base tangent length Min. base tangent length

No. of measuring teeth

Roughing/Finishing Stock for finishing

Gear quality

Basic rack profile

W_{kmax} [mm]

Wkmin [mm]

[DIN 3962]

k

[mm]

Tool Specification for Technical Quotation

			Date: _	
Contact		Order/Quot	ation Alrea	ady in
TaeguTec Contact	Yes		No	
Customer	Order- /	Quotation-N	lo.	
Customer Contact				

Outside diameter	D [mm]	
Adaption diameter	d [mm]	
Hub diameter	d1 [mm]	
Cutter width	a / LT [mm]	
Keyway width	b [mm]	
Keyway depth	t [mm]	
Module	m [mm]	
No. of teeth	Zo	
Pitch diameter	do [mm]	
Addendum	hapo [mm]	
Dedendum	h _{fPO} [mm]	
Addendum modification	xo • m [mm]	
Pressure angle	<i>a</i> ∘ [°]	
Helix angle	β o [°]	
Flank direction	L/R	
Tip radius	papo [mm]	
Base tangent length	Wko [mm]	
No. of measuring teeth	ko	

Workpiece Data		
Internal gear 🗌 Extern	nal gear	
Module	m [mm]	
No. of teeth	Z	
Pressure angle	<i>a</i> po [°]	
Helix angle	β [°]	
Flank direction	Ĺ/R	
Addendum modification coefficient	Х	
Tip diameter	da [mm]	
Root diameter	d _f [mm]	
Dimension over balls	M₀ [mm]	
Max. dimension over balls	Mdmax [mm]	
Min. dimension over balls	Mdmin [mm]	
Ball diameter	Dм [mm]	
Base tangent length over k meas. teeth	Wk [mm]	
Max. base tangent length	Wkmax [mm]	
Min. base tangent length	Wkmin [mm]	
No. of measuring teeth	k	
Stock for finishing	[mm]	
Gear quality		
Basic rack profile		
· · · · · · · · · · · · · · · · · · ·		

Tool

Outside diameter

Mounting diameter

Radial keyway (DIN 138)

Radial keyway (DIN 138)

Axial keyway (DIN 138)

Axial keyway (DIN 138)

Hub diameter

Cutter width

Remark

26

Gool CutZZ

Your Knowledge Machining Link!

• Cat.No: 6248240

- English Version: CT 10/2024
- ©TaeguTec LTD.